2 Review of Set Theory

Example 2.1. $\mathrm{It} \Omega=\{1,2,3,4,5,6\}$

$$
\text { Let }\left\{\begin{array}{l}
A=\{1,2,3\} \\
B=\{3,5,6\}
\end{array}\right.
$$

2.2. Venn aiagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply by examining Venn diagrams.

Figure 2: Example of a Venn diagram for two sets and a corresponding "K-Map"-style diagram

Figure 3: Example of a Venn diagram for three sets and a corresponding "K-Map"-style diagram
2.3. Membership: If ω is a member of a set A, we write $\omega \in A$.

Definition 2.4. Basic set operations (set algebra)

- Complementation: $A^{c}=\{\omega: \omega \notin A\} .=\{4,5,6\}$
- Union: $A \cup B=\{\omega: \omega \in A$ or $\omega \in B\}=\{1,2,3,5,6\}$
- Here "or" is inclusive; i.e., if $\omega \in A$, we permit ω to belong either to A or to B or to both.
- Extension: The union of the events $A_{1}, A_{2}, \ldots, A_{n}$ is denoted by $\bigcup_{i=1}^{n} A_{i}$. It consists of all outcomes that are in $\boldsymbol{a n y}$ of the events A_{i}.
- Intersection: $A \cap B=\{\omega: \omega \in A$ and $\omega \in B\}=\{3\}$
- Hence, $\omega \in A$ if and only if ω belongs to both A and B.
- Extension: The intersection of the events $A_{1}, A_{2}, \ldots, A_{n}$ is denoted by $\bigcap_{i=1}^{n} A_{i}$. It consists of all outcomes that are in all of the events A_{i}.
- $A \cap B$ is sometimes written simply as $A B$. We will not use that notation here.
- The set difference operation is defined by $B \backslash A=B \cap A^{c}$.
- $B \backslash A$ is the set of $\omega \in B$ that do not belong to A.
- When $A \subset B, B \backslash A$ is called the complement of A in B.

2.5. Basic Set Identities:
- Idempotence: $\left(\mathrm{A}^{c}\right)^{c}=\mathrm{A}$
- Commutativity (symmetry):

$$
A \cup B=B \cup A, A \cap B=B \cap A
$$

- Associativity:
- $A \cap(B \cap C)=(A \cap B) \cap C$
- $A \cup(B \cup C)=(A \cup B) \cup C$
- Distributivity

$$
\begin{aligned}
& \circ A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& \circ A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

- de Morgan laws

$$
\begin{aligned}
& \circ(A \cup B)^{c}=A^{c} \cap B^{c} \\
& \circ(A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

2.6. Disjoint Sets: non-overlapping sets

- Sets A and B are said to be disjoint $(A \perp B)$ if and only if $A \cap B=\emptyset$. (They do not share members).)
- A collection of sets $\left(A_{i}: i \in I\right)$ is said to be (pairwise) disjoint or mutually exclusive [9, p. 9] if and only if $\mathrm{A}_{i} \cap \mathrm{~A}_{j}=\emptyset$ when $i \neq j$.

Example 2.7. Sets A, B, and C are(pairwise)disjoint if

$$
\begin{aligned}
& A \cap B=\varnothing \\
& A \cap C=\varnothing \\
& B \cap C=\varnothing
\end{aligned}
$$

2.8. For a set of sets, to avoid the repeated use of the word "set", we will call it a collection/class/family of sets.

$$
\mathscr{D}=\{A, B, C\}
$$

Definition 2.9. Given a set S, a collection $\Pi=\left(A_{\alpha}: \alpha \in I\right)$ of subsets \int^{2} of S is said to be a partition of S if
(a) $S=\bigcup_{\alpha \in I} A_{\alpha}$ and
(b) For all $i \neq j, A_{i} \perp A_{j}$ (pairwise disjoint).

Remarks:

- The subsets $A_{\alpha}, \alpha \in I$ are called the parts of the partition.

[^0]- A part of a partition may be empty, but usually there is no advantage in considering partitions with one or more empty parts.

Example 2.10. Let $S=\{1,2,3,4,5,6\}, A=\{1\}, B=\{3,4\}$, $C=\{2,5,6\}$, and $D=\{1,2,5,6\}$.
(a) The collection of sets A, B and C forms a partition of set S.
(b) Another partition is the collection of sets B and D.

Example 2.11 (Slide:maps).
Example 2.12. Let E be the set of students taking this course.

$$
\begin{aligned}
& A=\text { the set of students who will get } A \\
& B+=\text { ", } \\
& B+ \\
& C+ \\
& C \\
& D+ \\
& D=D \\
& \varnothing=
\end{aligned}
$$

Definition 2.13. Important sets involving (real) numbers:
(a) The set \mathbb{N} of all natural numbers.

- More specifically, $\mathbb{N}=\{1,2,3, \ldots\}$.
- Note that ∞ is not a member of this set.
(b) The set \mathbb{Z} of all integers
(c) The set \mathbb{R} of all real numbers
- \mathbb{R} can be expressed as an interval $(-\infty, \infty)$.
(d) An interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set. The interval of numbers between a and b , including a and b, is often denoted $[a, b]$. The two numbers are called the endpoints of the interval.
To indicate that one of the endpoints is to be excluded from the set, the corresponding square bracket can be replaced with a parenthesis. For example,

$$
[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\} .
$$

Definition 2.14. A singleton is a set with exactly one element.

- Ex. $\{1.5\},\{.8\},\{\pi\}$. \{apple\}
- Caution: Be sure you understand the difference between the outcome -8 and the event $\{-8\}$, which is the set consisting of the single outcome -8 .

Definition 2.15. The cardinality (or size) of a collection or set A, denoted $|A|$, is the number of elements of the collection. This number may be finite or infinite.
(a) A finite set is a set that has a finite number of elements. In other words, it is either
(i) an empty set,
(ii) a singleton, or
(iii) a set whose elements can be listed in the form $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ for some $n \in \mathbb{N}$.
(b) A set that is not finite is called infinite. These sets have more than n elements for any integer n.

Definition 2.16. A countable set is a set with the same cardinality as some subset of the set of natural numbers. A countable set is either
(a) a finite set (potentially an empty set), or
(b) an infinite set if its elements can be listed in a sequence: a_{1}, a_{2}, \ldots In such case, the set is said to be countably infinite.
infinite + countable = countably infinite

Whether finite or infinite, the elements of a countable set can always be counted one at a time and, although the counting may never finish, every element of the set is associated with a natural number. Countable sets form the foundation of a branch of mathematics called discrete mathematics.

- the set $\mathbb{N}=\{\stackrel{2}{2}, 2,3, \ldots\}$ of natural numbers, $\boldsymbol{a}_{1} \boldsymbol{a}_{\text {. }}$
- the set $\{2 k: k \in \mathbb{N}\}$ of all evasive numbers, $=\{2,4,6,8, \ldots\}\}$
- the set $\{2 k-1: k \in \mathbb{N}\}$ of all ${ }^{2}$ odd numbers, $\boldsymbol{a}_{3} \boldsymbol{a}_{4}$ positive

$$
\begin{aligned}
& \text { Example: } a_{100}=+50 \\
& k=631 \Leftarrow a_{k}=-315 \\
& a_{5} \text { the set } \mathbb{Z} \text { of integers, }=\{\cdots,-3,-2,-1,0,1,2,3,4,5, \ldots\}
\end{aligned}
$$

Figure 5:
Examples
of Infinite Sets and Countable Sets

Definition 2.18. A set that is not countable is called uncountable set (or uncountable infinite set). It contains too many delements to be countable.

Example 2.19. Example of uncountable sets ${ }^{3}$;

- $\mathbb{R}=(-\infty, \infty)$
- interval with positive length: $[0,1]$
- union of intervals with positive length: $(2,3) \cup[5,7)$

[^1]| Set Theory | Probability Theory |
| :---: | :---: |
| Set | Event |
| Universal set | Sample Space (Ω) |
| Element | Outcome (ω) |

Table 1: The terminology of set theory and probability theory

Table 2: Event Language

$$
\begin{aligned}
A_{1} \cap A_{2} \cap A_{3} \cap \cdots \equiv & \text { All event, } \\
& \text { happen /occur }
\end{aligned}
$$

2.20. From Definitions 2.15 and 2.16, and 2.18, we can categorize sets according to whether they are infinite and whether they are countable. This is illustrated in Figure 4.

Definition 2.21. Probability theory renames some of the terminology in set theory. See Table 1 and Table 2.

- Sometimes, ω 's are called states, and Ω is called the state space.
2.22. Because of the mathematics required to determine probabilities, probabilistic methods are divided into two distinct types, discrete and continuous. A discrete approach is used when the number of experimental outcomes is finite (or infinite but countable). A continuous approach is used when the outcomes are continuous (and therefore infinite). It will be important to keep in mind which case is under consideration since otherwise, certain paradoxes may result.

[^0]: ${ }^{2}$ In this case, the subsets are indexed or labeled by α taking values in an index or label set I

[^1]: ${ }^{3}$ We use a technique called diagonal argument to prove that a set is not countable and hence uncountable.

